Monday, 1 January 2018

متوسط - نموذج الملاحظات تتحرك ،


مقدمة إلى أريما: النماذج غير التقليدية أريما (p، d، q) التنبؤ بالمعادلة: نماذج أريما هي، من الناحية النظرية، الفئة الأكثر عمومية من النماذج للتنبؤ بسلسلة زمنية يمكن أن تكون 8220stationary8221 عن طريق الاختلاف (إذا لزم الأمر)، ربما جنبا إلى جنب مع التحولات غير الخطية مثل قطع الأشجار أو تفريغ (إذا لزم الأمر). المتغير العشوائي الذي هو عبارة عن سلسلة زمنية ثابت إذا كانت خصائصه الإحصائية ثابتة على مر الزمن. سلسلة ثابتة لا يوجد لديه اتجاه، والاختلافات حول المتوسط ​​لها اتساع مستمر، وأنه يتلوى بطريقة متسقة. أي أن أنماطها الزمنية العشوائية القصيرة الأجل تبدو دائما بنفس المعنى الإحصائي. ويعني الشرط الأخير أن علاقاته الذاتية (الارتباطات مع انحرافاته السابقة عن المتوسط) تظل ثابتة على مر الزمن، أو على نحو مكافئ، أن طيف القدرة لا يزال ثابتا على مر الزمن. ويمكن أن ينظر إلى متغير عشوائي لهذا النموذج (كالمعتاد) على أنه مزيج من الإشارة والضوضاء، والإشارة (إذا كانت ظاهرة) يمكن أن تكون نمطا للانعكاس السريع أو البطيء، أو التذبذب الجيبية أو بالتناوب السريع في الإشارة ، ويمكن أن يكون لها أيضا عنصر موسمي. ويمكن النظر إلى نموذج أريما على أنه 8220filter8221 يحاول فصل الإشارة عن الضوضاء، ومن ثم يتم استقراء الإشارة إلى المستقبل للحصول على التنبؤات. ومعادلة التنبؤ أريما لسلسلة زمنية ثابتة هي معادلة خطية (أي الانحدار من نوع) تكون فيها المتنبؤات متخلفة عن المتغير التابع والتخلفات المتراكمة في أخطاء التنبؤ. وهذا هو: القيمة المتوقعة ل Y قيمة ثابتة ومرجحة لقيمة واحدة أو أكثر من القيم الأخيرة Y ومجموع مرجح لقيمة أو أكثر من القيم الأخيرة للأخطاء. إذا كانت المتنبئات تتكون فقط من قيم متخلفة من Y. هو نموذج الانحدار الذاتي النقي (8220self-regressed8221) النموذج، وهو مجرد حالة خاصة من نموذج الانحدار والتي يمكن تركيبها مع برامج الانحدار القياسية. على سبيل المثال، نموذج الانحدار الذاتي الأول (8220AR (1) 8221) ل Y هو نموذج انحدار بسيط يتغير فيه المتغير المستقل فقط بفترة واحدة (لاغ (Y، 1) في ستاتغرافيكس أو YLAG1 في ريجرسيت). إذا كان بعض المتنبؤات متخلفة من الأخطاء، وهو نموذج أريما فإنه ليس نموذج الانحدار الخطي، لأنه لا توجد طريقة لتحديد 8220 فترة قصيرة 8217s error8221 كمتغير مستقل: يجب أن تحسب الأخطاء على أساس فترة إلى فترة عندما يتم تركيب النموذج على البيانات. ومن وجهة النظر التقنية، فإن مشكلة استخدام الأخطاء المتأخرة كمنبئات هي أن التنبؤات النموذجية 8217s ليست دالات خطية للمعاملات. رغم أنها وظائف خطية للبيانات السابقة. لذلك، يجب تقدير المعاملات في نماذج أريما التي تتضمن أخطاء متخلفة بطرق التحسين غير الخطية (8220hill-التسلق 8221) بدلا من مجرد حل نظام المعادلات. اختصار أريما لتقف على السيارات والانحدار المتكامل المتحرك المتوسط. ويطلق على الفترات المتأخرة في السلسلة المعيارية في معادلة التنبؤ مصطلحات كوتورغريسغريسيفيكوت، ويطلق على "أخطاء أخطاء التنبؤ" مصطلحات متوسط ​​التكلفة، ويقال إن السلسلة الزمنية التي يجب أن تكون مختلفة لتكون ثابتة، هي عبارة عن نسخة متقاربة من سلسلة ثابتة. نماذج المشي العشوائي ونماذج الاتجاه العشوائي، ونماذج الانحدار الذاتي، ونماذج التجانس الأسي كلها حالات خاصة لنماذج أريما. ويصنف نموذج أريما نوناسونال على أنه نموذج كوتاريما (p، d، q) كوت حيث: p هو عدد مصطلحات الانحدار الذاتي، d هو عدد الاختلافات غير الموسمية اللازمة للاستبانة، و q هو عدد الأخطاء المتوقعة في التنبؤات معادلة التنبؤ. يتم بناء معادلة التنبؤ على النحو التالي. أولا، اسمحوا y تدل على الفرق د من Y. مما يعني: لاحظ أن الفرق الثاني من Y (حالة d2) ليس الفرق من 2 منذ فترات. بدلا من ذلك، هو الفرق الأول من الأول الفرق. وهو التناظرية منفصلة من مشتق الثاني، أي تسارع المحلي للسلسلة بدلا من الاتجاه المحلي. من حيث y. معادلة التنبؤ العامة هي: هنا يتم تعريف المعلمات المتوسطة المتحركة (9528217s) بحيث تكون علاماتها سلبية في المعادلة، وفقا للاتفاقية التي قدمها بوكس ​​وجينكينز. بعض الكتاب والبرمجيات (بما في ذلك لغة البرمجة R) تعريفها بحيث لديهم علامات زائد بدلا من ذلك. عندما يتم توصيل الأرقام الفعلية في المعادلة، لا يوجد أي غموض، ولكن من المهم أن نعرف 8217s الاتفاقية التي يستخدمها البرنامج الخاص بك عندما كنت تقرأ الإخراج. في كثير من الأحيان يتم الإشارة إلى المعلمات هناك من قبل أر (1)، أر (2)، 8230، و ما (1)، ما (2)، 8230 الخ لتحديد نموذج أريما المناسب ل Y. تبدأ من خلال تحديد ترتيب الاختلاف (د) الحاجة إلى توثيق السلسلة وإزالة الخصائص الإجمالية للموسمية، ربما بالاقتران مع تحول استقرار التباين مثل قطع الأشجار أو الانقسام. إذا كنت تتوقف عند هذه النقطة والتنبؤ بأن سلسلة ديفيرنتد ثابت، لديك مجرد تركيب المشي العشوائي أو نموذج الاتجاه العشوائي. ومع ذلك، قد لا تزال السلسلة المستقرة ذات أخطاء ذات علاقة ذاتية، مما يشير إلى أن هناك حاجة إلى بعض المصطلحات أر (p 8805 1) أندور بعض مصطلحات ما (q 8805 1) في معادلة التنبؤ. ستتم مناقشة عملية تحديد قيم p و d و q الأفضل لسلسلة زمنية معينة في الأقسام اللاحقة من الملاحظات (التي توجد روابطها في أعلى هذه الصفحة)، ولكن معاينة لبعض الأنواع من نماذج أريما نونسونالونال التي تواجه عادة ما يرد أدناه. أريما (1،0،0) من الدرجة الأولى نموذج الانحدار الذاتي: إذا كانت السلسلة ثابتة و أوتوكوريلاتد، وربما يمكن التنبؤ بها باعتبارها متعددة من قيمتها السابقة، بالإضافة إلى ثابت. معادلة التنبؤ في هذه الحالة هي 8230 الذي يتراجع Y على نفسه متأخرا بفترة واحدة. هذا هو 8220ARIMA (1،0،0) ثابت 8221 نموذج. إذا كان متوسط ​​Y هو الصفر، فإن المصطلح الثابت لن يتم تضمينه. إذا كان معامل الانحدار 981 1 موجبا وأقل من 1 في الحجم (يجب أن يكون أقل من 1 من حيث الحجم إذا كان Y ثابتا)، يصف النموذج سلوك التراجع المتوسط ​​الذي ينبغي التنبؤ فيه بقيمة 8217s للفترة التالية لتكون 981 1 مرة بعيدا عن متوسط ​​هذه الفترة قيمة 8217s. وإذا كان 981 1 سلبيا، فإنه يتنبأ بسلوك التراجع عن طريق تبديل الإشارات، أي أنه يتوقع أيضا أن يكون Y أقل من متوسط ​​الفترة التالية إذا كان أعلى من متوسط ​​هذه الفترة. في نموذج الانحدار الذاتي من الدرجة الثانية (أريما (2،0،0))، سيكون هناك مصطلح T-2 على اليمين كذلك، وهكذا. واعتمادا على علامات ومقدار المعاملات، يمكن أن يصف نموذج أريما (2،0،0) نظاما له انعكاس متوسط ​​يحدث بطريقة تتأرجح جيبيا، مثل حركة الكتلة في فصل الربيع الذي يتعرض للصدمات العشوائية . أريما (0،1،0) المشي العشوائي: إذا كانت السلسلة Y ليست ثابتة، أبسط نموذج ممكن لذلك هو نموذج المشي العشوائي، والتي يمكن اعتبارها حالة الحد من نموذج أر (1) التي الانتكاس الذاتي معامل يساوي 1، أي سلسلة مع بلا حدود بطيئة متوسط ​​الانعكاس. ويمكن كتابة معادلة التنبؤ لهذا النموذج على النحو التالي: حيث يكون المصطلح الثابت هو متوسط ​​التغير من فترة إلى أخرى (أي الانجراف الطويل الأجل) في Y. ويمكن تركيب هذا النموذج كنموذج انحدار لا اعتراض يقوم فيه الفرق الأول من Y هو المتغير التابع. وبما أنه يشمل (فقط) اختلافا غير منطقي ومدة ثابتة، فإنه يصنف على أنه نموذج كوتاريما (0،1،0) مع ثابت. كوت نموذج المشي العشوائي بدون الانجراف سيكون أريما (0،1، 0) نموذج بدون نموذج أريسترجيسد من الدرجة الأولى (1-1،0): إذا كانت أخطاء نموذج المشي العشوائي مترابطة تلقائيا، ربما يمكن إصلاح المشكلة بإضافة فاصل واحد للمتغير التابع إلى معادلة التنبؤ - أي وذلك بتراجع الفارق الأول من Y على نفسه متأخرا بفترة واحدة. وهذا من شأنه أن يسفر عن معادلة التنبؤ التالية: التي يمكن إعادة ترتيبها إلى هذا هو نموذج الانحدار الذاتي من الدرجة الأولى مع ترتيب واحد من اختلاف غير منطقي ومدة ثابتة - أي. وهو نموذج أريما (1،1،0). أريما (0،1،1) دون تمهيد الأسي المستمر المستمر: اقترح استراتيجية أخرى لتصحيح الأخطاء أوتوكوريلاتد في نموذج المشي العشوائي من قبل نموذج تمهيد الأسي بسيط. تذكر أنه بالنسبة لبعض السلاسل الزمنية غير المستقرة (مثل تلك التي تظهر تقلبات صاخبة حول متوسط ​​متباينة ببطء)، فإن نموذج المشي العشوائي لا يؤدي فضلا عن المتوسط ​​المتحرك للقيم السابقة. وبعبارة أخرى، فبدلا من أخذ الملاحظة الأخيرة كتوقعات الملاحظة التالية، من الأفضل استخدام متوسط ​​الملاحظات القليلة الأخيرة من أجل تصفية الضوضاء وتقدير المتوسط ​​المحلي بدقة أكبر. يستخدم نموذج التمهيد الأسي البسيط المتوسط ​​المتحرك المرجح أضعافا مضاعفة للقيم السابقة لتحقيق هذا التأثير. يمكن كتابة معادلة التنبؤ لنموذج التمهيد الأسي البسيط في عدد من الأشكال المكافئة رياضيا. واحد منها هو ما يسمى 8220 خطأ التصحيح 8221 النموذج، الذي يتم تعديل التوقعات السابقة في اتجاه الخطأ الذي قدمه: لأن ه ر - 1 ذ ر - 1 - 374 ر - 1 حسب التعريف، يمكن إعادة كتابة هذا كما في : وهو أريما (0،1،1) مع معادلة التنبؤ المستمر مع 952 1 1 - 945. وهذا يعني أنه يمكنك تناسب تمهيد الأسي بسيط من خلال تحديده كنموذج أريما (0،1،1) دون ثابت، ويقدر معامل ما (1) المقدر 1-ناقص ألفا في صيغة سيس. نذكر أن متوسط ​​عمر البيانات في التنبؤات قبل فترة واحدة هو 945 1 في نموذج سيس، وهذا يعني أنها سوف تميل إلى التخلف عن الاتجاهات أو نقاط التحول بنحو 1 945 فترات. ويترتب على ذلك أن متوسط ​​عمر البيانات في التنبؤات السابقة بفترة زمنية واحدة لنموذج أريما (0،1،1) بدون نموذج ثابت هو 1 (1 - 952 1). إذا، على سبيل المثال، إذا كان 952 1 0.8، متوسط ​​العمر هو 5. كما 952 1 النهج 1، يصبح النموذج أريما (0،1،1) بدون ثابت متوسط ​​متحرك طويل الأجل جدا، و 952 1 النهج 0 يصبح نموذج المشي العشوائي دون الانجراف. ما هو أفضل طريقة لتصحيح الارتباط الذاتي: إضافة المصطلحات أر أو إضافة مصطلحات ما في النموذجين السابقين نوقش أعلاه، تم إصلاح مشكلة أخطاء أوتوكوريلاتد في نموذج المشي العشوائي بطريقتين مختلفتين: عن طريق إضافة قيمة متخلفة من سلسلة مختلفة إلى المعادلة أو إضافة قيمة متأخرة لخطأ التنبؤ. النهج الذي هو أفضل قاعدة من الإبهام لهذا الوضع، والتي سيتم مناقشتها بمزيد من التفصيل في وقت لاحق، هو أن الارتباط الذاتي الإيجابي عادة ما يعامل بشكل أفضل عن طريق إضافة مصطلح أر إلى النموذج وعادة ما يعامل الارتباط الذاتي السلبي عن طريق إضافة ما المدى. في سلسلة الأعمال والاقتصاد الزمني، وغالبا ما تنشأ الارتباط الذاتي السلبي باعتباره قطعة أثرية من الاختلاف. (بشكل عام، يقلل الاختلاف من الارتباط الذاتي الإيجابي وربما يتسبب في التحول من الارتباط الذاتي الموجب إلى السالب). لذلك، فإن نموذج أريما (0،1،1)، الذي يكون فيه الاختلاف مصحوبا بمصطلح ما، غالبا ما يستخدم من أريما (1،1،0) نموذج. أريما (0،1،1) مع تمهيد الأسي المستمر المستمر مع النمو: من خلال تنفيذ نموذج سيس كنموذج أريما، كنت في الواقع كسب بعض المرونة. أولا وقبل كل شيء، ويسمح معامل ما (1) المقدرة لتكون سلبية. وهذا يقابل عامل تمهيد أكبر من 1 في نموذج سيس، وهو ما لا يسمح به عادة إجراء تركيب نموذج سيس. ثانيا، لديك خيار إدراج مدة ثابتة في نموذج أريما إذا كنت ترغب في ذلك، من أجل تقدير متوسط ​​الاتجاه غير الصفر. ويشتمل نموذج أريما (0،1،1) الثابت على معادلة التنبؤ: إن التنبؤات ذات الفترة الواحدة من هذا النموذج متشابهة نوعيا مع نموذج نموذج سيس، إلا أن مسار التنبؤات الطويلة الأجل عادة ما يكون (المنحدر يساوي مو) بدلا من خط أفقي. أريما (0،2،1) أو (0،2،2) دون تمهيد أسي خطية ثابتة: نماذج التجانس الأسية الخطية هي نماذج أريما التي تستخدم اثنين من الاختلافات نونسوناسونال بالتزامن مع الشروط ما. والفرق الثاني لسلسلة Y ليس مجرد الفرق بين Y وتخلف نفسها بفترتين، وإنما هو الفرق الأول من الاختلاف الأول - أي. التغيير في تغيير Y في الفترة t. وبالتالي، فإن الفارق الثاني من Y في الفترة t يساوي (Y t - Y t-1) - (Y t-1 - Y t-2) Y t - 2Y t-1 Y t-2. والفرق الثاني من الدالة المنفصلة يشبه مشتق ثان من دالة مستمرة: يقيس الدالة كوتاكسيليركوت أو كوتكورفاتوريكوت في الدالة عند نقطة معينة من الزمن. ويتنبأ نموذج أريما (0،2،2) دون توقع ثابت بأن الفارق الثاني من السلسلة يساوي دالة خطية لآخر خطأين متوقعين: يمكن إعادة ترتيبهما على النحو التالي: حيث يكون 952 1 و 952 2 هما (1) و ما (2) معاملات. هذا هو نموذج التجانس الأسي العام الخطية. أساسا نفس نموذج Holt8217s، و Brown8217s نموذج هو حالة خاصة. ويستخدم المتوسطات المتحركة المرجح أضعافا مضاعفة لتقدير كل من المستوى المحلي والاتجاه المحلي في هذه السلسلة. تتلاقى التوقعات على المدى الطويل من هذا النموذج مع خط مستقيم يعتمد ميله على متوسط ​​الاتجاه الملحوظ نحو نهاية السلسلة. أريما (1،1،2) دون ثابت خطي الاتجاه الاتجاه الأسي تمهيد. ويوضح هذا النموذج في الشرائح المصاحبة على نماذج أريما. فإنه يستقلب الاتجاه المحلي في نهاية السلسلة ولكن تسطح بها في آفاق التنبؤ أطول لإدخال مذكرة من المحافظة، وهي الممارسة التي لديها الدعم التجريبي. انظر المقال على كوهي في ذي تريند تريند وركسكوت غاردنر أند ماكنزي أند ذي كوغولدن رولكوت أرتيسترونغ إت آل. للتفاصيل. فمن المستحسن عموما التمسك النماذج التي لا يقل عن واحد من p و q لا يزيد عن 1، أي لا تحاول أن تناسب نموذج مثل أريما (2،1،2)، وهذا من المرجح أن يؤدي إلى الإفراط في تجهيز وكومكومون-فاكتوركوت القضايا التي نوقشت بمزيد من التفصيل في الملاحظات على الهيكل الرياضي لنماذج أريما. تنفيذ جدول البيانات: من السهل تنفيذ نماذج أريما مثل تلك الموضحة أعلاه على جدول بيانات. ومعادلة التنبؤ هي مجرد معادلة خطية تشير إلى القيم السابقة للسلاسل الزمنية الأصلية والقيم السابقة للأخطاء. وهكذا، يمكنك إعداد جدول بيانات تنبؤ أريما عن طريق تخزين البيانات في العمود ألف، وصيغة التنبؤ في العمود باء، والأخطاء (البيانات ناقص التنبؤات) في العمود C. وستكون صيغة التنبؤ في خلية نموذجية في العمود باء ببساطة تعبير خطي يشير إلى القيم في الصفوف السابقة من العمودين A و C مضروبا في معاملات أر أو ما المناسبة المخزنة في خلايا أخرى في جدول البيانات. العام: العدد أو الكمية التي تقع بين (من وسيط إلى) عدة كميات وأرقام. انظر أيضا يعني التأمين العام: يعني المصطلح الخاضع للمتوسط ​​أنه إذا كان المبلغ المؤمن عليه في وقت الخسارة أقل من قيمة التأمين المؤمن عليه. سيتم تخفيض المبلغ المطالب به بموجب هذه السياسة بالتناسب مع نقص التأمين. يسمى أيضا بند متوسط. انظر أيضا التأمين المشترك. التأمين البحري: متوسط ​​يعني الجزئي (الخسارة) يتحمل طرف واحد خسارة متوسطة. ويشترك جميع المعنيين في الخسارة المتوسطة العامة. الآن تحل محلها إلى حد كبير مع أحكام البضائع المعهد A، B، أو C. Cuality التحكم: التعبير الأكثر شيوعا للتمركز للتوزيع يحسب بقسمة مجموع القيم لوحظ من قبل عدد من الملاحظات. داو جونز الصناعي المتوسط ​​(دجيا)، الذي يقيس فإن أداء أسهم 30 من أكبر الشركات الأمريكية هو أحد الأمثلة المعروفة. ويبدو أن متوسط ​​العمر الذي يصبح فيه الوالدان من الوالدين يزداد كلما زاد التركيز على إنشاء وظائف قبل البدء بالأسر. ويبلغ ارتفاع متوسط ​​الذكور الأمريكيين نحو 57 عاما، في حين أن ذروة متوسط ​​الذكور اليابانيين هي 56. وعادة ما تحتوي الأسرة الأمريكية المتوسطة على زوجين واثنين على الأقل من الأطفال الذين يعيشون جميعا في نفس المنزل. العائد على الاستثمار (روي) المتوسط ​​المتحرك ونماذج التمهيد الأسيوي كخطوة أولى في التحرك خارج النماذج المتوسطة، ونماذج المشي العشوائي، ونماذج الاتجاه الخطي، يمكن استنباط أنماط واتجاهات غير تقليدية باستخدام نموذج متحرك أو متوسط. الافتراض الأساسي وراء المتوسطات ونماذج التمهيد هو أن السلاسل الزمنية ثابتة محليا بمتوسط ​​متغير ببطء. وبالتالي، فإننا نأخذ متوسطا متحركا (محلي) لتقدير القيمة الحالية للمتوسط ​​ومن ثم استخدامه كمؤشر للمستقبل القريب. ويمكن اعتبار ذلك بمثابة حل توفيقي بين النموذج المتوسط ​​ونموذج المشي العشوائي بدون الانجراف. ويمكن استخدام نفس الاستراتيجية لتقدير الاتجاه المحلي واستقراءه. وعادة ما يطلق على المتوسط ​​المتحرك نسخة كوتسموثيدكوت من السلسلة الأصلية لأن المتوسط ​​على المدى القصير له تأثير على إزالة المطبات في السلسلة الأصلية. من خلال تعديل درجة التمهيد (عرض المتوسط ​​المتحرك)، يمكننا أن نأمل في ضرب نوع من التوازن الأمثل بين أداء المتوسط ​​و نماذج المشي العشوائي. أبسط نوع من نموذج المتوسط ​​هو. المتوسط ​​المتحرك البسيط (بالتساوي المرجح): تقدر قيمة قيمة Y في الوقت t1 التي يتم إجراؤها في الوقت t بالمتوسط ​​البسيط لآخر ملاحظات m: (هنا وفي مكان آخر سأستخدم الرمز 8220Y-hat8221 للوقوف للتنبؤ بالسلسلة الزمنية Y التي أجريت في أقرب موعد ممكن من قبل نموذج معين.) ويتركز هذا المتوسط ​​في الفترة t - (m1) 2، مما يعني أن تقدير المتوسط ​​المحلي سوف تميل إلى التخلف عن الحقيقة قيمة المتوسط ​​المحلي بنحو (m1) فترتين. وبالتالي، نقول أن متوسط ​​عمر البيانات في المتوسط ​​المتحرك البسيط هو (m1) 2 بالنسبة إلى الفترة التي يتم فيها احتساب التوقعات: هذا هو مقدار الوقت الذي تميل التنبؤات إلى التخلف عن نقاط التحول في البيانات . على سبيل المثال، إذا كنت تقوم بحساب متوسط ​​القيم الخمس الأخيرة، فإن التوقعات ستكون حوالي 3 فترات متأخرة في الاستجابة لنقاط التحول. ويلاحظ أنه في حالة M1، فإن نموذج المتوسط ​​المتحرك البسيط (سما) يساوي نموذج المشي العشوائي (بدون نمو). وإذا كانت m كبيرة جدا (مماثلة لطول فترة التقدير)، فإن نموذج سما يعادل النموذج المتوسط. وكما هو الحال مع أي معلمة لنموذج التنبؤ، من العرفي أن تعدل قيمة k من أجل الحصول على أفضل قيمة ممكنة للبيانات، أي أصغر أخطاء التنبؤ في المتوسط. وفيما يلي مثال لسلسلة يبدو أنها تظهر تقلبات عشوائية حول متوسط ​​متغير ببطء. أولا، يتيح محاولة لتناسب ذلك مع نموذج المشي العشوائي، وهو ما يعادل متوسط ​​متحرك بسيط من 1 مصطلح: نموذج المشي العشوائي يستجيب بسرعة كبيرة للتغيرات في هذه السلسلة، ولكن في ذلك يفعل ذلك يختار الكثير من كوتنويسكوت في البيانات (التقلبات العشوائية) وكذلك كوتسيغنالكوت (المتوسط ​​المحلي). إذا حاولنا بدلا من ذلك متوسط ​​متحرك بسيط من 5 مصطلحات، نحصل على مجموعة أكثر سلاسة من التوقعات: المتوسط ​​المتحرك البسيط لمدة 5 سنوات ينتج أخطاء أقل بكثير من نموذج المشي العشوائي في هذه الحالة. متوسط ​​عمر البيانات في هذه التوقعات هو 3 ((51) 2)، بحيث تميل إلى التخلف عن نقاط التحول بنحو ثلاث فترات. (على سبيل المثال، يبدو أن الانكماش قد حدث في الفترة 21، ولكن التوقعات لا تتحول حتى عدة فترات في وقت لاحق). لاحظ أن التوقعات على المدى الطويل من نموذج سما هي خط مستقيم أفقي، تماما كما في المشي العشوائي نموذج. وبالتالي، يفترض نموذج سما أنه لا يوجد اتجاه في البيانات. ومع ذلك، في حين أن التنبؤات من نموذج المشي العشوائي هي ببساطة مساوية للقيمة الملاحظة الأخيرة، والتنبؤات من نموذج سما يساوي المتوسط ​​المرجح للقيم الأخيرة. إن حدود الثقة المحسوبة من قبل ستاتغرافيكس للتنبؤات طويلة الأجل للمتوسط ​​المتحرك البسيط لا تتسع مع زيادة أفق التنبؤ. ومن الواضح أن هذا غير صحيح لسوء الحظ، لا توجد نظرية إحصائية أساسية تخبرنا كيف يجب أن تتسع فترات الثقة لهذا النموذج. ومع ذلك، ليس من الصعب جدا حساب التقديرات التجريبية لحدود الثقة للتنبؤات الأطول أجلا. على سبيل المثال، يمكنك إعداد جدول بيانات سيتم فيه استخدام نموذج سما للتنبؤ بخطوتين إلى الأمام، و 3 خطوات إلى الأمام، وما إلى ذلك ضمن عينة البيانات التاريخية. يمكنك بعد ذلك حساب الانحرافات المعيارية للعينة في كل أفق للتنبؤ، ومن ثم بناء فترات ثقة للتنبؤات الأطول أجلا عن طريق جمع وطرح مضاعفات الانحراف المعياري المناسب. إذا حاولنا متوسط ​​متحرك بسيط لمدة 9 سنوات، نحصل على توقعات أكثر سلاسة وأكثر تأثيرا متخلفا: متوسط ​​العمر هو الآن 5 فترات ((91) 2). إذا أخذنا متوسط ​​متحرك لمدة 19 عاما، فإن متوسط ​​العمر يزيد إلى 10: لاحظ أن التوقعات تتخلف الآن عن نقاط التحول بنحو 10 فترات. أي كمية من التجانس هو الأفضل لهذه السلسلة هنا جدول يقارن إحصاءات الخطأ، بما في ذلك أيضا متوسط ​​3 المدى: نموذج C، المتوسط ​​المتحرك لمدة 5 سنوات، ينتج أقل قيمة رمز بهامش صغير على 3 المتوسطات و 9-المدى، وإحصاءاتهم الأخرى متطابقة تقريبا. لذلك، من بين نماذج مع إحصاءات الخطأ مشابهة جدا، يمكننا أن نختار ما إذا كنا نفضل استجابة أكثر قليلا أو أكثر قليلا نعومة في التوقعات. (العودة إلى أعلى الصفحة.) براونز بسيط الأسي تمهيد (المتوسط ​​المتحرك المرجح أضعافا) نموذج المتوسط ​​المتحرك البسيط المذكورة أعلاه لديه الخاصية غير المرغوب فيها أنه يعامل الملاحظات k الماضية بالتساوي تماما ويتجاهل جميع الملاحظات السابقة. بشكل حدسي، يجب أن يتم خصم البيانات السابقة بطريقة أكثر تدرجية - على سبيل المثال، يجب أن تحصل على الملاحظة الأخيرة أكثر قليلا من الوزن الثاني من أحدث، و 2 أحدث يجب الحصول على وزن أكثر قليلا من 3 أحدث، و هكذا. نموذج التمهيد الأسي بسيط (سيس) يحقق هذا. اسمحوا 945 تدل على كونتسموثينغ كونستانتكوت (عدد بين 0 و 1). طريقة واحدة لكتابة النموذج هو تعريف سلسلة L التي تمثل المستوى الحالي (أي القيمة المتوسطة المحلية) من السلسلة كما يقدر من البيانات حتى الوقت الحاضر. يتم حساب قيمة L في الوقت t بشكل متكرر من قيمته السابقة مثل هذا: وهكذا، فإن القيمة الملساء الحالية هي الاستكمال الداخلي بين القيمة الملساء السابقة والمراقبة الحالية، حيث 945 تسيطر على التقارب من قيمة محرف إلى الأحدث الملاحظة. التوقعات للفترة القادمة هي ببساطة القيمة الملساء الحالية: على نحو مماثل، يمكننا التعبير عن التوقعات القادمة مباشرة من حيث التوقعات السابقة والملاحظات السابقة، في أي من الإصدارات المكافئة التالية. في النسخة الأولى، والتنبؤ هو الاستيفاء بين التوقعات السابقة والملاحظة السابقة: في النسخة الثانية، ويتم الحصول على التوقعات القادمة عن طريق ضبط التوقعات السابقة في اتجاه الخطأ السابق من قبل كمية كسور 945. هو الخطأ المحرز في الوقت t. أما في النسخة الثالثة، فإن التنبؤ هو المتوسط ​​المتحرك المرجح ألسعاره (أي مخفضة) مع عامل الخصم 1- 945: إصدار الاستكمال الداخلي لصيغة التنبؤ هو أبسط الاستخدام إذا كنت تنفذ النموذج على جدول بيانات: خلية واحدة ويحتوي على مراجع الخلية مشيرا إلى التوقعات السابقة، الملاحظة السابقة، والخلية حيث يتم تخزين قيمة 945. لاحظ أنه إذا كان 945 1، فإن نموذج سيس يساوي نموذج المشي العشوائي (بدون نمو). وإذا كان 945 0، فإن نموذج سيس يعادل النموذج المتوسط، على افتراض أن القيمة الملساء الأولى موضوعة تساوي المتوسط. (العودة إلى أعلى الصفحة). يبلغ متوسط ​​عمر البيانات في توقعات التمهيد الأسي البسيط 945 1 بالنسبة للفترة التي يتم فيها حساب التوقعات. (وهذا ليس من المفترض أن يكون واضحا، ولكن يمكن بسهولة أن تظهر من خلال تقييم سلسلة لانهائية). وبالتالي، فإن متوسط ​​المتوسط ​​المتحرك بسيط يميل إلى التخلف عن نقاط التحول بنحو 1 945 فترات. على سبيل المثال، عندما يكون 945 0.5 الفارق الزمني هو فترتين عندما يكون 945 0.2 الفارق الزمني هو 5 فترات عندما يكون 945 0.1 الفارق الزمني هو 10 فترات، وهكذا. وبالنسبة إلى متوسط ​​عمر معين (أي مقدار التأخير)، فإن توقعات التمهيد الأسي البسيط تفوق إلى حد ما توقعات المتوسط ​​المتحرك البسيط (سما) لأنها تضع وزنا أكبر نسبيا على الملاحظة الأخيرة - أي. هو أكثر قليلا كوريبرسونسيفكوت إلى التغييرات التي تحدث في الماضي القريب. على سبيل المثال، نموذج سما مع 9 شروط ونموذج سيس مع 945 0.2 على حد سواء لديها متوسط ​​عمر 5 للبيانات في توقعاتها، ولكن نموذج سيس يضع وزنا أكبر على القيم 3 الماضية مما يفعل نموذج سما وفي في الوقت نفسه فإنه don8217t تماما 8220forget8221 حول قيم أكثر من 9 فترات القديمة، كما هو مبين في هذا المخطط: ميزة أخرى هامة من نموذج سيس على نموذج سما هو أن نموذج سيس يستخدم معلمة تمهيد التي هي متغيرة باستمرار، لذلك يمكن بسهولة الأمثل باستخدام خوارزمية كوتسولفيركوت لتقليل متوسط ​​الخطأ التربيعي. وتبين القيمة المثلى ل 945 في نموذج سيس لهذه السلسلة 0.2961، كما هو مبين هنا: متوسط ​​عمر البيانات في هذا التنبؤ هو 10.2961 3.4 فترات، وهو ما يشبه متوسط ​​المتوسط ​​المتحرك البسيط لمدة 6. والتنبؤات الطويلة الأجل من نموذج الخدمة الاقتصادية والاجتماعية هي خط مستقيم أفقي. كما هو الحال في نموذج سما ونموذج المشي العشوائي دون نمو. ومع ذلك، لاحظ أن فترات الثقة التي يحسبها ستاتغرافيكس الآن تتباعد بطريقة معقولة المظهر، وأنها هي أضيق بكثير من فترات الثقة لنموذج المشي العشوائي. ويفترض نموذج سيس أن المسلسل إلى حد ما يمكن التنبؤ به أكثر من ذلك لا نموذج المشي العشوائي. نموذج سيس هو في الواقع حالة خاصة من نموذج أريما. وبالتالي فإن النظرية الإحصائية لنماذج أريما توفر أساسا سليما لحساب فترات الثقة لنموذج سيس. على وجه الخصوص، نموذج سيس هو نموذج أريما مع اختلاف واحد غير منطقي، وهو ما (1) المدى، وليس هناك مصطلح ثابت. والمعروف باسم كوتاريما (0،1،1) نموذج دون كونستانتكوت. معامل ما (1) في نموذج أريما يتوافق مع الكمية 1- 945 في نموذج سيس. على سبيل المثال، إذا كنت تناسب نموذج أريما (0،1،1) دون ثابت لسلسلة تحليلها هنا، فإن ما المقدرة (1) معامل تبين أن يكون 0.7029، وهو تقريبا تقريبا واحد ناقص 0.2961. ومن الممكن إضافة افتراض اتجاه خطي ثابت غير صفري إلى نموذج سيس. للقيام بذلك، مجرد تحديد نموذج أريما مع اختلاف واحد نونسونالونال و ما (1) المدى مع ثابت، أي أريما (0،1،1) نموذج مع ثابت. وعندئذ سيكون للتنبؤات الطويلة الأجل اتجاه يساوي متوسط ​​الاتجاه الذي لوحظ خلال فترة التقدير بأكملها. لا يمكنك القيام بذلك بالتزامن مع التعديل الموسمية، لأن خيارات التعديل الموسمية يتم تعطيل عند تعيين نوع النموذج إلى أريما. ومع ذلك، يمكنك إضافة اتجاه أسي ثابت على المدى الطويل إلى نموذج بسيط الأسي تمهيد (مع أو بدون تعديل موسمي) باستخدام خيار تعديل التضخم في إجراء التنبؤ. ويمكن تقدير معدل كوتينفلاتيونكوت المناسب (نسبة النمو) لكل فترة على أنها معامل الانحدار في نموذج الاتجاه الخطي المجهز بالبيانات بالتزامن مع تحول لوغاريتم طبيعي، أو يمكن أن يستند إلى معلومات مستقلة أخرى تتعلق باحتمالات النمو على المدى الطويل . (العودة إلى أعلى الصفحة). البني الخطي (أي مزدوج) تجانس الأسي نماذج سما ونماذج سيس تفترض أنه لا يوجد أي اتجاه من أي نوع في البيانات (التي عادة ما تكون موافق أو على الأقل ليست سيئة جدا لمدة 1- والتنبؤ بالمتابعة عندما تكون البيانات صاخبة نسبيا)، ويمكن تعديلها لإدراج اتجاه خطي ثابت كما هو مبين أعلاه. ماذا عن الاتجاهات على المدى القصير إذا كانت سلسلة يعرض معدل نمو متفاوت أو نمط دوري الذي يبرز بوضوح ضد الضوضاء، وإذا كان هناك حاجة للتنبؤ أكثر من 1 فترة المقبلة، ثم قد يكون تقدير الاتجاه المحلي أيضا قضية. ويمكن تعميم نموذج التمهيد الأسي البسيط للحصول على نموذج تمهيد أسي خطي (ليس) يحسب التقديرات المحلية لكل من المستوى والاتجاه. أبسط نموذج الاتجاه المتغير بمرور الوقت هو نموذج تمهيد الأسي الخطي براون، والذي يستخدم سلسلتين مختلفتين تمهيدهما تتمركزان في نقاط مختلفة من الزمن. وتستند صيغة التنبؤ إلى استقراء خط من خلال المركزين. (ويمكن مناقشة الشكل الأكثر تطورا من هذا النموذج، هولت 8217s أدناه). ويمكن التعبير عن شكل جبري من نموذج التجانس الأسي الخطي البني 8217s، مثل نموذج التجانس الأسي البسيط، في عدد من الأشكال المختلفة ولكن المكافئة. وعادة ما يعبر عن الشكل المعياري للنموذج من هذا النموذج على النحو التالي: اسمحوا S تدل على سلسة سلسة السلسلة التي تم الحصول عليها عن طريق تطبيق تمهيد الأسي بسيط لسلسلة Y. وهذا هو، يتم إعطاء قيمة S في الفترة t من قبل: (أذكر أنه تحت بسيطة الأسفل، وهذا سيكون التنبؤ ل Y في الفترة t1.) ثم اسمحوا سكوت تدل على سلسلة مضاعفة مضاعفة التي تم الحصول عليها من خلال تطبيق التمهيد الأسي بسيطة (باستخدام نفس 945) لسلسلة S: وأخيرا، والتوقعات ل تك تك. عن أي kgt1، تعطى بواسطة: هذه الغلة e 1 0 (أي الغش قليلا، والسماح للتوقعات الأولى تساوي الملاحظة الأولى الفعلية)، و e 2 Y 2 8211 Y 1. وبعد ذلك يتم توليد التنبؤات باستخدام المعادلة أعلاه. وهذا يعطي نفس القيم المجهزة كالصيغة المستندة إلى S و S إذا كانت الأخيرة قد بدأت باستخدام S 1 S 1 Y 1. يستخدم هذا الإصدار من النموذج في الصفحة التالية التي توضح مجموعة من التجانس الأسي مع التعديل الموسمية. هولت 8217s الخطي الأسي تمهيد البني 8217s نموذج ليس يحسب التقديرات المحلية من المستوى والاتجاه من خلال تمهيد البيانات الأخيرة، ولكن حقيقة أنه يفعل ذلك مع معلمة تمهيد واحد يضع قيدا على أنماط البيانات التي هي قادرة على تناسب: المستوى والاتجاه لا يسمح لها أن تختلف بمعدلات مستقلة. ويعالج نموذج هولت 8217s ليس هذه المسألة عن طريق تضمين اثنين من الثوابت تمهيد، واحدة للمستوى واحد للاتجاه. في أي وقت t، كما هو الحال في نموذج Brown8217s، هناك تقدير ل t من المستوى المحلي وتقدير t ر للاتجاه المحلي. وهنا يتم حسابها بشكل متكرر من قيمة Y الملاحظة في الوقت t والتقديرات السابقة للمستوى والاتجاه من خلال معادلتين تنطبقان على تمهيد أسي لها بشكل منفصل. وإذا كان المستوى المقدر والاتجاه في الوقت t-1 هما L t82091 و T t-1. على التوالي، فإن التنبؤ ب Y تشي الذي كان سيجري في الوقت t-1 يساوي L t-1 T t-1. وعند ملاحظة القيمة الفعلية، يحسب التقدير المحدث للمستوى بصورة متكررة بالاستكمال الداخلي بين Y تشي وتوقعاته L t-1 T t-1 باستعمال أوزان 945 و1-945. والتغير في المستوى المقدر، وهي L t 8209 L t82091. يمكن تفسيرها على أنها قياس صاخبة للاتجاه في الوقت t. ثم يتم حساب التقدير المحدث للاتجاه بشكل متكرر عن طريق الاستكمال الداخلي بين L t 8209 L t82091 والتقدير السابق للاتجاه T t-1. وذلك باستخدام أوزان 946 و 1-946: تفسير ثابت ثابت تمهيد 946 مماثل لتلك التي من 9500 تمهيد مستوى ثابت. نماذج ذات قيم صغيرة من 946 نفترض أن الاتجاه يتغير ببطء شديد مع مرور الوقت، في حين أن النماذج مع أكبر 946 تفترض أنها تتغير بسرعة أكبر. ويعتقد نموذج مع كبير 946 أن المستقبل البعيد غير مؤكد جدا، لأن الأخطاء في تقدير الاتجاه تصبح مهمة جدا عند التنبؤ أكثر من فترة واحدة المقبلة. (العودة إلى أعلى الصفحة). ويمكن تقدير ثوابت التنعيم 945 و 946 بالطريقة المعتادة من خلال تقليل الخطأ المتوسط ​​التربيعي للتنبؤات ذات الخطوة الأولى. عندما يتم ذلك في ستاترافيكس، وتظهر التقديرات إلى أن 945 0.3048 و 946 0.008. القيمة الصغيرة جدا 946 تعني أن النموذج يفترض تغير طفيف جدا في الاتجاه من فترة إلى أخرى، وذلك أساسا هذا النموذج هو محاولة لتقدير الاتجاه على المدى الطويل. وبالمقارنة مع فكرة متوسط ​​عمر البيانات المستخدمة في تقدير المستوى المحلي للسلسلة، فإن متوسط ​​عمر البيانات المستخدمة في تقدير الاتجاه المحلي يتناسب مع 1 946، وإن لم يكن يساويها بالضبط . في هذه الحالة تبين أن تكون 10.006 125. هذا هو 8217t عدد دقيق جدا بقدر دقة تقدير 946 isn8217t حقا 3 المنازل العشرية، ولكن من نفس الترتيب العام من حيث حجم العينة من 100، لذلك هذا النموذج هو المتوسط ​​على مدى الكثير جدا من التاريخ في تقدير هذا الاتجاه. ويبين مخطط التنبؤ الوارد أدناه أن نموذج ليس يقدر اتجاه محلي أكبر قليلا في نهاية السلسلة من الاتجاه الثابت المقدر في نموذج سيترند. كما أن القيمة المقدرة ل 945 تكاد تكون مطابقة لتلك التي تم الحصول عليها من خلال تركيب نموذج سيس مع أو بدون اتجاه، لذلك هذا هو تقريبا نفس النموذج. الآن، هل هذه تبدو وكأنها توقعات معقولة لنموذج من المفترض أن يكون تقدير الاتجاه المحلي إذا كنت 8220eyeball8221 هذه المؤامرة، يبدو كما لو أن الاتجاه المحلي قد تحولت إلى أسفل في نهاية السلسلة ما حدث المعلمات من هذا النموذج قد تم تقديرها من خلال تقليل الخطأ المربعة للتنبؤات 1-خطوة إلى الأمام، وليس التنبؤات على المدى الطويل، في هذه الحالة لا يوجد 8217t الاتجاه الكثير من الفرق. إذا كان كل ما كنت تبحث في 1-خطوة قبل الأخطاء، كنت لا ترى الصورة الأكبر للاتجاهات أكثر (مثلا) 10 أو 20 فترات. من أجل الحصول على هذا النموذج أكثر في تناغم مع استقراء العين مقلة العين من البيانات، يمكننا ضبط ثابت الاتجاه تجانس يدويا بحيث يستخدم خط الأساس أقصر لتقدير الاتجاه. على سبيل المثال، إذا اخترنا تعيين 946 0.1، ثم متوسط ​​عمر البيانات المستخدمة في تقدير الاتجاه المحلي هو 10 فترات، وهو ما يعني أننا متوسط ​​متوسط ​​الاتجاه على مدى تلك الفترات 20 الماضية أو نحو ذلك. Here8217s ما مؤامرة توقعات يبدو وكأننا وضعنا 946 0.1 مع الحفاظ على 945 0.3. هذا يبدو معقولا بشكل حدسي لهذه السلسلة، على الرغم من أنه من المحتمل أن يستقضي هذا الاتجاه أي أكثر من 10 فترات في المستقبل. ماذا عن إحصائيات الخطأ هنا هو مقارنة نموذج للنموذجين المبينين أعلاه وكذلك ثلاثة نماذج سيس. القيمة المثلى 945. لنموذج سيس هو تقريبا 0.3، ولكن يتم الحصول على نتائج مماثلة (مع استجابة أكثر قليلا أو أقل، على التوالي) مع 0.5 و 0.2. (A) هولتس الخطي إكس. تمهيد مع ألفا 0.3048 وبيتا 0.008 (B) هولتس الخطية إكس. تمهيد مع ألفا 0.3 و بيتا 0.1 (C) تمهيد الأسي بسيط مع ألفا 0.5 (D) تمهيد الأسي بسيطة مع ألفا 0.3 (E) بسيطة الأسي تمهيد مع ألفا 0.2 احصائياتهم متطابقة تقريبا، لذلك نحن حقا يمكن 8217t جعل الاختيار على أساس من 1-خطوة قبل توقعات الأخطاء داخل عينة البيانات. وعلينا أن نعود إلى الاعتبارات الأخرى. إذا كنا نعتقد اعتقادا قويا أنه من المنطقي أن يستند تقدير الاتجاه الحالي على ما حدث على مدى السنوات ال 20 الماضية أو نحو ذلك، يمكننا أن نجعل من حالة لنموذج ليس مع 945 0.3 و 946 0.1. إذا أردنا أن نكون ملحدين حول ما إذا كان هناك اتجاه محلي، فإن أحد نماذج سيس قد يكون من الأسهل تفسيره، كما سيوفر المزيد من توقعات منتصف الطريق للفترات الخمس أو العشر القادمة. (العودة إلى أعلى الصفحة). أي نوع من الاستقراء هو الأفضل: أدلة أفقية أو خطية تشير إلى أنه إذا تم تعديل البيانات (إذا لزم الأمر) للتضخم، فقد يكون من غير الحكمة استقراء الخطي القصير الأجل الاتجاهات بعيدة جدا في المستقبل. إن الاتجاهات الواضحة اليوم قد تتراجع في المستقبل بسبب أسباب متنوعة مثل تقادم المنتج، وزيادة المنافسة، والانكماش الدوري أو التحولات في صناعة ما. لهذا السبب، تجانس الأسي بسيط غالبا ما يؤدي أفضل من خارج العينة مما قد يكون من المتوقع خلاف ذلك، على الرغم من كوتنيفيكوت الاتجاه الأفقي الاستقراء. وكثيرا ما تستخدم أيضا تعديلات الاتجاه المخفف لنموذج تمهيد الأسي الخطي في الممارسة العملية لإدخال ملاحظة المحافظة على توقعات الاتجاه. ويمكن تطبيق نموذج ليس المائل للاتجاه ليس كحالة خاصة لنموذج أريما، ولا سيما نموذج أريما (1،1،2). ومن الممكن حساب فترات الثقة حول التنبؤات طويلة الأجل التي تنتجها نماذج التمهيد الأسي، من خلال اعتبارها حالات خاصة لنماذج أريما. (حذار: لا تحسب جميع البرامج فترات الثقة لهذه النماذج بشكل صحيح). يعتمد عرض فترات الثقة على (1) خطأ رمز في النموذج، (2) نوع التجانس (بسيط أو خطي) (3) القيمة (ق) من ثابت ثابت (ق) و (4) عدد الفترات المقبلة كنت التنبؤ. بشكل عام، انتشرت الفترات بشكل أسرع مع 945 يحصل أكبر في نموذج سيس وانتشرت بشكل أسرع بكثير عندما يتم استخدام خطية بدلا من تجانس بسيط. ويناقش هذا الموضوع بمزيد من التفصيل في قسم نماذج أريما من الملاحظات. (العودة إلى أعلى الصفحة.)

No comments:

Post a Comment